Some theoretical aspects of partial least squares regression
نویسندگان
چکیده
منابع مشابه
Partial Least Squares Regression (PLS)
Number of latents The same number of factors will be extracted for PLS responses as for PLS factors. The researcher must specify how many latents to extract (in SPSS the default is 5). There is no one criterion for deciding how many latents to employ. Common alternatives are: 1. Cross-validating the model with increasing numbers of factors, then choosing the number with minimum prediction error...
متن کاملPartial Least Squares (PLS) Regression
Pls regression is a recent technique that generalizes and combines features from principal component analysis and multiple regression. It is particularly useful when we need to predict a set of dependent variables from a (very) large set of independent variables (i.e., predictors). It originated in the social sciences (specifically economy, Herman Wold 1966) but became popular first in chemomet...
متن کاملPartial least squares methods: partial least squares correlation and partial least square regression.
Partial least square (PLS) methods (also sometimes called projection to latent structures) relate the information present in two data tables that collect measurements on the same set of observations. PLS methods proceed by deriving latent variables which are (optimal) linear combinations of the variables of a data table. When the goal is to find the shared information between two tables, the ap...
متن کاملRobust Methods for Partial Least Squares Regression
Partial Least Squares Regression (PLSR) is a linear regression technique developed to deal with high-dimensional regressors and one or several response variables. In this paper we introduce robustified versions of the SIMPLS algorithm being the leading PLSR algorithm because of its speed and efficiency. Because SIMPLS is based on the empirical cross-covariance matrix between the response variab...
متن کاملModel selection for partial least squares regression
Partial least squares (PLS) regression is a powerful and frequently applied technique in multivariate statistical process control when the process variables are highly correlated. Selection of the number of latent variables to build a representative model is an important issue. A metric frequently used by chemometricians for the determination of the number of latent variables is that of Wold’s ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chemometrics and Intelligent Laboratory Systems
سال: 2001
ISSN: 0169-7439
DOI: 10.1016/s0169-7439(01)00154-x